ACE Workshop - Introduction ### **ACE Science Working Group** - Hard eyed look at the ACE Decadal Survey Mission and the perspectives on which it was based - Start with the mission as described in the Decadal Survey - Any changes will have to be justified rigorously (e.g., OSSEs) - Cost is a very significant issue we need to work to reduce costs and justify any increases - Interdisciplinary / Collaborative Nature of ACE - Sensors - Retrievals - Science - Monitoring | Decadal
Survey
Mission | Mission Description | Orbit | Instruments | Rough
Cost
Estimate | |------------------------------|---|--------------------|--|---------------------------| | Timeframe 2 | 2010 – 2013, Missions listed by cost | | | | | CLARREO
(NASA | Solar and Earth radiation, spectrally resolved forcing and response of the | LEO,
Precessing | Absolute, spectrally-
resolved interferometer | \$200 M | | portion) | climate system | Trecessing | resolved interferometer | | | SMAP | Soil moisture and freeze/thaw for
weather and water cycle processes | LEO, SSO | L-band radar
L-band radiometer | \$300 M | | ICESat-II | Ice sheet height changes for climate
change diagnosis | LEO, Non-
SSO | Laser altimeter | \$300 M | | DESDynI | Surface and ice sheet deformation for
understanding natural hazards and
climate; vegetation structure for
ecosystem health | LEO, SSO | L-band InSAR
Laser altimeter | \$700 M | | Timeframe: | 2013 – 2016, Missions listed by cost | | | | | HyspIRI | Land surface composition for agriculture
and mineral characterization; vegetation
types for ecosystem health | LEO, SSO | Hyperspectral spectrometer | \$300 M | | ASCENDS | Day/night, all-latitude, all-season CO ₂
column integrals for climate emissions | LEO, SSO | Multifrequency laser | \$400 M | | SWOT | Ocean, lake, and river water levels for ocean and inland water dynamics | LEO, SSO | Ka-band wide swath radar
C-band radar | \$450 M | | GEO-
CAPE | Atmospheric gas columns for air quality
forecasts; ocean color for coastal
ecosystem health and climate emissions | GEO | High and low spatial resolution hyperspectral imagers | \$550 M | | ACE | Aerosol and cloud profiles for climate
and water cycle; ocean color for open
ocean biogeochemistry | LEO, SSO | Backscatter lidar
Multiangle polarimeter
Doppler radar | \$800 M | | Timeframe: | 2016 -2020, Missions listed by cost | | | | | LIST | Land surface topography for landslide
hazards and water runoff | LEO, SSO | Laser altimeter | \$300 M | | PATH | High frequency, all-weather temperature
and humidity soundings for weather
forecasting and SST ^a | GEO | MW array spectrometer | \$450 M | | GRACE-II | High temporal resolution gravity fields
for tracking large-scale water movement | LEO, SSO | Microwave or laser ranging system | \$450 M | | SCLP | Snow accumulation for fresh water availability | LEO, SSO | Ku and X-band radars
K and Ka-band radiometers | \$500 M | | GACM | Ozone and related gases for
intercontinental air quality and
stratospheric ozone layer prediction | LEO, SSO | UV spectrometer
IR spectrometer
Microwave limb sounder | \$600 M | | 3D-Winds
(Demo) | Tropospheric winds for weather
forecasting and pollution transport | LEO, SSO | Doppler lidar | \$650 M | Tier 1 Tier 2 Tier 3 ### **Missions in Formulation and Implementation** OSTM 6/2008 OCO 1/2009 GLORY 6/2009 AQUARIUS 5/2010 NPP 6/2010 LDCM 7/2011 SMAP 2012 GPM 6/2013, 11/2014 ICESat-II 2015 ### **Earth Science New Initiative** #### **NEW vs. PREVIOUS (hatched) MISSION PROFILE** ## **ACE SWG Structure** #### **ACE Science Working Group** | Sub-Teams | Name | Sub-Teams | Name | | |------------------------------------|--|-----------------------------------|---|------| | Management | | Clouds | | | | HQ | Maring, Hal
Bontempi, Paula
Freidl, Lawrence
Neeck, Steve | Theory/Modeler | Jensen, Eric
Stephens, Graeme
Feingold, Graham
Wu, Dong
Marchand, Roger | | | Science Lead | McClain, Chuck
Schoeberl, Mark | | Hou, Arthur | | | Coordinator | Vane, Deb | Retreivals | Ackerman, Steve
Platnick, Steve
Mace, Jay | | | HQ Program Office | e DiJoseph, Mary | | Haddad, Ziad | | | ESTO | Smith, Bob | Radar | Im, Eastwood
Heymsfield, Gerry | | | Ocean Biogeocher
Theory/Modeler | mistry Behrenfeld, Mike Boss, Emmanuel Follows, Mick | | Racette, Paul
Durden, Steve
Tanelli, Simone | | | | Siegel, Dave | Aerosols
Theory/Modeler | Colarco, Pete | | | Retreivals | Ahmad, Zia
Wang, Menghua
Gordon, Howard
Arnone, Bob | ,, | Nenes, Thanos
Toon, Brian
Westphal, Doug | | | OC Spectrometer | | Retreivals | Remer, Lorraine
Mishchenko, Michael
Kahn, Ralph
Hu, Yong | | | | Meister, Gerhard
Holmes, Alan
Brown, Steve | Polarimeter/Imager | Diner, David
Martins, Vanderlei
Cairns, Brian | | | Cal/Val | Hooker, Stan | Lidar | Welton, Judd
Hostetler, Chris | | | Radiation | Loeb, Norm
Kato, Sejii
Pilewskie, Peter | | McGill, Matt
Wright, C. Wayne | | | Mission Design | Devito, Dan
Boland, Stacey | Cal/Val | Starr, David
Redemann, Jens | NASA | ### **Tone of Study** #### Synergies • Interdisciplinary: how do we inform the communities (aerosol, cloud, precipitation, ocean biology and biogeochemistry) and work together to strengthen scientific objectives and mission rationale #### Tier II DS Mission #### Goals of Workshop - Science Rationale for Mission Interdisciplinary Nature of Science - Science Questions → Measurements → Observational Requirements - Discussion of potential international synergies on science - Establish study groups - schedule for discussion/telecons/workshops - define tasks for study groups (OSSEs, Team X/IMDC, instrument studies/ISALs, etc.) # Workshop Agenda 1 - 1. Introduction (Hal Maring & Paula Bontempi) - 2. Description of ACE in Decadal Survey (Mark Schoeberl) - 3. Introduction to Earth Science Program Office (Mary DiJoseph) - 4. Future Needs in Climate Modeling - a. Mick Follows (ocean biogeochemistry) - b. Pete Colarco (aerosols) - c. Tony DelGenio (clouds) - d. Ann Fridlind (aerosol cloud interactions) - 5. Review, Prioritization and Possible Refinement of STM - a. Lorraine Remer (Aerosols) - b. Mike Behrenfeld (Biogeochemistry) - c. Jay Mace (Clouds) - 6. Introductory Talk(s) on Aerosol Retrievals - a. Passive nadir and multi-angle (Ralph Kahn) - b. Polarimetric (Brian Cairns) - c. UV (Omar Torres) - d. Lidar (Chris Hostetler) # Workshop Agenda 2 - 7. Introductory Talk on Ocean Color Retrievals (Chuck McClain) - 8. Introductory Talk on Cloud & Precip Retrievals - a. Passive (Steve Platnick) - b. Radar (Graeme Stephens) - 9. What is needed to maximize ACE science? - a. Connection to GPM (Arthur Hou) - b. Connection to Earth Radiation Budget (Norm Loeb) - c. IR and μ-wave instruments (Dave Starr) - d. What instrument characteristics do we need thinking 10 years into the future? (Mark Schoeberl) - 10. What next? Studies, Collaborators, and Meetings. (Mark Schoeberl and Chuck McClain) - a. Multi-beam lidar OSSE (atmosphere and ocean) - b. Orbit - c. HSRL OSSE (atmosphere and ocean) - d. Scanning Radar OSSE - e. Aerosols and Ocean Color from one instrument? - f. International Collaboration - g. Follow up meeting(s) with participants, foreign collaborators, and private sector instrument makers.